Alumni Dissertations

 

Alumni Dissertations

Filter Dissertations By:

 
 
  • OPTOMECHANICS OF CAVITY DRIVEN NANOPARTICLES

    Author:
    Joel Rubin
    Year of Dissertation:
    2012
    Program:
    Physics
    Advisor:
    Lev Deych
    Abstract:

    The subject of this thesis is the opto-mechanical interaction of a spherical high-Q microresonator and a subwavelength particle, which, at optical wavelengths, corresponds to a size on the order of nanometers. After a review of the basic theory of spherical resonators and multi-sphere scattering, the full self-consistent electromagnetic field of the coupled resonator-particle system is derived. The particle-induced frequency shift and broadening is calculated by examining the poles of the scattering coefficients of the resonator. The force exerted on the particle by the field is determined via the Maxwell stress tensor, and is found to be in general non-conservative. From the force, the trajectories of the particle positioned outside the resonator are investigated. The relationship between frequency shift and the conservative and non-conservative components of the force is found to differ from the well-known formulas for the "gradient" and "scattering" force, which are commonly derived by neglecting the modification of the resonator field by the particle. The key aspects of this difference are investigated by re-deriving the results of the exact field calculations from a modified gradient/scattering framework, which explicitly takes into account the modification of the resonator field due to the particle.

  • Direct Growth of Graphene-like Films on Single Crystal Quartz Substrates

    Author:
    Siarhei Samsonau
    Year of Dissertation:
    2013
    Program:
    Physics
    Advisor:
    Alexander Zaitsev
    Abstract:

    Direct growth of graphene-like (GL) films (nano-crystalline graphite films) on single crystal quartz substrates by chemical vapor deposition (CVD) from methane and molecular beam growth (MBG) is reported. The GL films have been characterized by means of Raman spectroscopy, atomic force microscopy and electrical measurements. Raman spectroscopy reveals nanocrystalline structure of the films grown at different conditions. The thinnest CVD grown GL films obtained so far have a thickness of 1.5 nm, a relatively rough surface structure and electrical conductivity in the range of 20 kohm/square. Low temperature Hall-effect measurements performed on these films have revealed that the major charge carriers are holes with mobility of 40 cm²/Vs at room temperature. While inferior to graphene in terms of electronic properties, the graphene-like films possess very high chemical sensitivity. Study of MBG grown films revealed formation of a non-conductive carbon layer of low crystallinity on the initial stage of the growth process. In order to study the influence of the quartz substrate on the film formation process we performed ab initio simulation of the MBG process. For this simulation we used an atom-by-atom approach, which, we believe, is a closer approximation to the real molecular beam deposition process reported so far. The simulation showed that the initial formation of the film follows the atomic structure of the substrate. This leads to a high content of sp3 hybridized atoms at the initial stage of growth and explains formation of a non-conductive film. Additionally, we demonstrated how a non-conductive film becomes conductive with the increase of the film thickness. These results agree fairly well with the data obtained by AFM, electrical, and Raman measurements conducted on the films grown by MBG. High chemical sensitivity of GL films has been demonstrated by measuring the change in their conductance during exposure to a NO2-containing atmosphere. Sensitivity of CVD grown GL films have been shown to be superior to that of MBG grown GL films. The stimulating action of ultraviolet light illumination on the chemical sensitivity has been found to be comparable to that of carbon nanotubes. A detection limit of 40 ppb (parts-per-billion) of NO2 diluted in an inert atmosphere has been estimated from the signal-to-noise ratio analysis. The optimal electrical conductance, high chemical sensitivity as well as the simple growth method make the CVD grown GL films promising for practical applications as a chemically sensitive material. Results obtained during this work were presented on several conferences: Gotham-Metro Condensed Matter Meeting (New York, NY), April 2010 and November 2012; American Physical Society March Meeting (Dallas, TX), March 2011; Nanoelectronic Devices for Defense & Security (NANO-DDS) Conference (Brooklyn, NY), August 2011. Two papers (http://dx.doi.org/10.1016/j.snb.2013.02.067 and http://dx.doi.org/10.1016/j.snb.2013.06.023) were published based on the results presented in this thesis.

  • Gauge/ Gravity Correspondence, Bulk Locality and Quantum Black Holes

    Author:
    Debajyoti Sarkar
    Year of Dissertation:
    2014
    Program:
    Physics
    Advisor:
    Daniel Kabat
    Abstract:

    The aim of this dissertation is threefold. We begin by the study of two parallel ideal cosmic strings in the presence of non-minimal scalar fields and spin- 1 gauge fields. We show that the contributions of the non-minimal term on the interaction energy between the strings are similar to that of the gauge field for a particular value of non-minimal coupling parameter. In this context we clarify some of the issues that arise when comparing the renormalization of black hole entropy and entanglement entropy using the replica trick. In the second part of the dissertation we study the process of bound state formation in clusters of Dp- brane collision and Dp shell/ Membrane collapse processes. We consider two mechanisms for bound state formation. The first, operative at weak coupling in the worldvolume gauge theory, is creation of W-bosons. The second, operative at strong coupling, corresponds to formation of a black hole in the dual supergravity. These two processes agree qualitatively at intermediate coupling, in accord with the correspondence principle of Horowitz and Polchinski. We show that the size of the bound state and timescale for formation of a bound state agree at the correspondence point, along with other relevant thermodynamic quantities. The timescale involves matching a parametric resonance in the gauge theory to a quasinormal mode in supergravity. Finally we study construction of local operators in AdS using the generalized AdS/ CFT correspondence. After briefly sketching previous works on this topic which involve massless and massive scalar fields, we present similar construction for spin- 1 and spin- 2 gauge fields. Working in holographic gauge in the bulk, at leading order in 1/N bulk gauge fields are obtained by smearing boundary currents over a sphere on the complexified boundary, while linearized metric fluctuations are obtained by smearing the boundary stress tensor over a ball. This representation respects AdS covariance up to a compensating gauge transformation. We also consider massive vector fields, where the bulk field is obtained by smearing a non-conserved current. We compute bulk two-point functions and show that bulk locality is respected. We show how to include interactions of massive vectors using 1/N perturbation theory, and we comment on the issue of general backgrounds. We point out some more recent works on interacting scalar and gauge fields and try to answer the question of what should be the CFT properties to have a dual gravitational descriptions on AdS space. We end with some speculations about finite N and when we have black holes in the bulk.

  • Performance Physics Analysis and Synthesis of Communicative Bodies

    Author:
    Anthony Schultz
    Year of Dissertation:
    2012
    Program:
    Physics
    Advisor:
    Brian Schwartz
    Abstract:

    Human motion contains information like written or spoken language. Contemporary camera and computer technologies capture this information for gaming, animation, medical diagnostics and robotic control. In this thesis we model human performance recorded with motion capture and video. Beginning with a kinematic chain model of the human body we generate a metric for comparing different states of skeletal articulation. Applying this measure over motion data time series generates similarity spectra from which we identify and characterize body motions. We use the results to model the subject's underlying movement vocabulary with a network of connected recordings called a motion graph. We construct a set of motion graphs from video data and by assigning variable transition probabilities between recorded movement sequences we model the purposeful subject as a stochastic traversal process on the motion graph. Finally we present the application of a non-anatomical kinematic chain model to video data and derive the accompanying distance metrics. We discuss the results and possible applications of these techniques.

  • Measuring the transmission matrix for microwave radiation propagating through random waveguides: fundamentals and applications

    Author:
    Zhou Shi
    Year of Dissertation:
    2014
    Program:
    Physics
    Advisor:
    Azriel Genack
    Abstract:

    This thesis describes the measurement and analysis of the transmission matrix (TM) for microwave radiation propagating through multichannel random waveguides in the crossover to Anderson localization. Eigenvalues of the transmission matrix and the associated eigenchannels are obtained via a singular value decomposition of the TM. The sum of the transmission eigenvalues yields the transmittance T, which is the classical analog of the dimensionless conductance g. The dimensionless conductance g is the electronic conductance in units of the quantum conductance, G/(e^2/h). For diffusive waves g>1, approximately g transmission eigenchannels contribute appreciably to the transmittance T. In contrast, for localized waves with g<1, T is dominated by the highest transmission eigenvalue, &tau&1. For localized waves, the inverse of the localization lengths of different eigenchannels are found to be equally spaced. Measurement of the TM allows us to explore the statistics of the transmittance T. A one-sided log-normal distribution of T is found for a random ensemble with your g=0.37 and explained using an intuitive Coulomb gas model for the transmission eigenvalues. Single parameter scaling (SPS) predicted for one dimension random system is approached in multichannel systems once T is dominated by a single transmission eigenchannel. In addition to the statistics of the TM for ensembles of random samples, we investigated the statistics of a single TM. The statistics within a large single TM are found to depend upon a single parameter, the eigenchannel participation number, M. The variance of the total transmission normalized by its averaging in the TM is equal to M-1. We found universal fluctuation of M, reminiscent of the well known universal conductance fluctuations for diffusive waves. We demonstrate focusing of steady state and pulse transmission through a random medium via phase conjugation of the TM. The contrast between the focus and the background is determined by M and the size of the transmission matrix N. The spatio-temporal profile of focused radiation in the diffusive limit is shown to be the square of the field-field correlation function in space and time. We determine the density of states (DOS) of a disordered medium from the dynamics of transmission eigenchannels and from the quasi-normal modes of the medium for localized samples. The intensity profile of each eigenchannel within the random media is closely linked to the dynamics of transmission eigenchannels and an analytical expression for intensity profile of each of the eigenchannel based on numerical simulation was provided.

  • Self-consistent calculations of optical properties of type I and type II quantum heterostructures

    Author:
    Vladimir Shuvayev
    Year of Dissertation:
    2009
    Program:
    Physics
    Advisor:
    Lev Deych
    Abstract:

    In this Thesis the self-consistent computational methods are applied to the study of the optical properties of semiconductor nanostructures with one- and two-dimensional quantum confinements. At first, the self-consistent Schrodinger-Poisson system of equations is applied to the cylindrical core-shell structure with type~II band alignment without direct Coulomb interaction between carriers. The electron and hole states and confining potential are obtained from a numerical solution of this system. The photoluminescence kinetics is theoretically analyzed, with the nanostructure size dispersion taken into account. The results are applied to the radiative recombination in the system of ZnTe/ZnSe stacked quantum dots. A good agreement with both continuous wave and time-resolved experimental observations is found. It is shown that size distribution results in the photoluminescence decay that has essentially non-exponential behavior even at the tail of the decay where the carrier lifetime is almost the same due to slowly changing overlap of the electron and hole wavefunctions. Also, a model situation applicable to colloidal core-shell nanowires is investigated and discussed. With respect to the excitons in type I quantum wells, a new computationally efficient and flexible approach of calculating the characteristics of excitons, based on a self-consistent variational treatment of the electron-hole Coulomb interaction, is developed. In this approach, a system of self-consistent equations describing the motion of an electron-hole pair is derived. The motion in the growth direction of the quantum well is separated from the in-plane motion, but each of them occurs in modified potentials found self-consistently. This approach is applied to a shallow quantum well with the delta-potential profile, for which analytical expressions for the exciton binding energy and the ground state eigenfunctions are obtained, and to the quantum well with the square potential profile with several different well and barrier materials. The numerical results yield lower exciton binding energies in comparison to standard variational calculations, while the iterative scheme used to calculate the energies and respective wavefunctions is stable, rapidly convergent and requires reduced computational effort. Thus, the method can be an important computational tool in computing exciton characteristics in quantum wells exceeding currently existing approaches in accuracy and efficiency. The method can also be naturally generalized for quantum wires and dots.

  • Self-consistent calculations of optical properties of type I and type II quantum heterostructures

    Author:
    Vladimir Shuvayev
    Year of Dissertation:
    2009
    Program:
    Physics
    Advisor:
    Lev Deych
    Abstract:

    In this Thesis the self-consistent computational methods are applied to the study of the optical properties of semiconductor nanostructures with one- and two-dimensional quantum confinements. At first, the self-consistent Schrodinger-Poisson system of equations is applied to the cylindrical core-shell structure with type~II band alignment without direct Coulomb interaction between carriers. The electron and hole states and confining potential are obtained from a numerical solution of this system. The photoluminescence kinetics is theoretically analyzed, with the nanostructure size dispersion taken into account. The results are applied to the radiative recombination in the system of ZnTe/ZnSe stacked quantum dots. A good agreement with both continuous wave and time-resolved experimental observations is found. It is shown that size distribution results in the photoluminescence decay that has essentially non-exponential behavior even at the tail of the decay where the carrier lifetime is almost the same due to slowly changing overlap of the electron and hole wavefunctions. Also, a model situation applicable to colloidal core-shell nanowires is investigated and discussed. With respect to the excitons in type I quantum wells, a new computationally efficient and flexible approach of calculating the characteristics of excitons, based on a self-consistent variational treatment of the electron-hole Coulomb interaction, is developed. In this approach, a system of self-consistent equations describing the motion of an electron-hole pair is derived. The motion in the growth direction of the quantum well is separated from the in-plane motion, but each of them occurs in modified potentials found self-consistently. This approach is applied to a shallow quantum well with the delta-potential profile, for which analytical expressions for the exciton binding energy and the ground state eigenfunctions are obtained, and to the quantum well with the square potential profile with several different well and barrier materials. The numerical results yield lower exciton binding energies in comparison to standard variational calculations, while the iterative scheme used to calculate the energies and respective wavefunctions is stable, rapidly convergent and requires reduced computational effort. Thus, the method can be an important computational tool in computing exciton characteristics in quantum wells exceeding currently existing approaches in accuracy and efficiency. The method can also be naturally generalized for quantum wires and dots.

  • Control of Light-Matter Interaction via Dispersion Engineering

    Author:
    Harish Natarajan Swaha Krishnamoorthy
    Year of Dissertation:
    2014
    Program:
    Physics
    Advisor:
    Vinod Menon
    Abstract:

    This thesis describes the design, fabrication and characterization of certain nanostructures to engineer light-matter interaction. These materials have peculiar dispersion properties owing to their structural design, which is exploited to control spontaneous emission properties of emitters such as quantum dots and dye molecules. We will discuss two classes of materials based on the size of their unit cell compared to the wavelength of the electromagnetic radiation they interact with. The first class are hyperbolic metamaterials (HMM) composed of alternate layers of a metal and a dielectric of thicknesses much smaller than the wave- length. Using a HMM composed of silver and titanium dioxide, we demonstrate the optical equivalent of the well-known Lifshitz transition in electronic systems. Then we describe the development of a tunable HMM whose optical properties can be tuned. The tunability is achieved by exploiting the insulator to metal phase transition in vanadium dioxide. We then discuss the second class of materials - photonic crystals, in which the size scale of the unit cell is of the order of the wavelength of electromagnetic radiation they interact with. Due to strong scattering in such systems, bandgaps open up in certain directions, which we use to modify the spontaneous emission of a fluorescent dye.

  • Fuzzy Field Theory as a Random Matrix Model

    Author:
    Juraj Tekel
    Year of Dissertation:
    2013
    Program:
    Physics
    Advisor:
    V Parameswaran Nair
    Abstract:

    This dissertation considers the theory of scalar fields on fuzzy spaces from the point of view of random matrices. First we define random matrix ensembles, which are natural description of such theory. These ensembles are new and the novel feature is a presence of kinetic term in the probability measure, which couples the random matrix to a set of external matrices and thus breaks the original symmetry. Considering the case of a free field ensemble, which is generalization of a Gaussian matrix ensemble, we develop a technique to compute expectation values of the observables of the theory based on explicit Wick contractions and we write down recursion rules for these. We show that the eigenvalue distribution of the random matrix follows the Wigner semicircle distribution with a rescaled radius. We also compute distributions of the matrix Laplacian of the random matrix given by the new term and demonstrate that the eigenvalues of these two matrices are correlated. We demonstrate the robustness of the method by computing expectation values and distributions for more complicated observables. We then consider the ensemble corresponding to an interacting field theory, with a quartic interaction. We use the same method to compute the distribution of the eigenvalues and show that the presence of the kinetic terms rescales the distribution given by the original theory, which is a polynomially deformed Wigner semicircle. We compute the eigenvalue distribution of the matrix Laplacian and the joint distribution up to second order in the correlation and we show that the correlation between the two changes from the free field case. Finally, as an application of these results, we compute the phase diagram of the fuzzy scalar field theory, we find multiscaling which stabilizes this diagram in the limit of large matrices and compare it with the results obtained numerically and by considering the kinetic part as a perturbation.

  • Interactions between a Bacterial Tyrosine Kinase and its Cognate Phosphatase- A Solution NMR Study

    Author:
    Deniz Temel
    Year of Dissertation:
    2012
    Program:
    Physics
    Advisor:
    Ranajeet Ghose
    Abstract:

    Bacterial tyrosine kinases (BY-kinases) play a central role in a variety of physiological processes in bacterial cells. Most notable among these processes is the formation of antiphagocytic capsule and biofilm for survival under environmental stress conditions. BY-kinases constitute a unique class of prokaryotic enzymes sharing no sequence or structural homology with their eukaryal counterparts. BY-kinases are regulated by eukaryotic-like protein tyrosine phosphatases and several tyrosine kinase/phosphatase pairs, which have been identified in both gram-positive and gram-negative bacterial species. The Escherichia coli (K12) BY-kinase Wzc is regulated by a cytosolic Low Molecular Weight Protein Tyrosine Phosphatase (LMW-PTP) Wzb through the autophosphorylation/dephosphorylation of five phosphorylatable tyrosine residues (termed the tyrosine cluster, YC) located in the C-terminal tail of the cytosolic catalytic domain of Wzc. The cycling between autophosphorylated form of Wzc and the Wzb-catalyzed dephosphorylated state, rather than the quantitative phosphorylation state of the YC, appears to play a central role in the synthesis and export of the exopolysaccharide, colanic acid. Despite biochemical evidence that Wzb dephosphorylates YC-phosphorylated Wzc, the nature of the interactions between these two enzymes and the detailed regulatory mechanism has not been elucidated. The aim of this research was to identify the structural, dynamic and mechanistic aspects of the regulation of Wzc by Wzb. We used state-of-the-art solution-state Nuclear Magnetic Resonance (NMR) techniques in order to illuminate the interaction between Wzc and Wzb. We have obtained near-complete resonance assignments of the catalytic domain of Wzc, the first for a BY-kinase. Utilizing these assignments and chemical shift titrations, we demonstrate that Wzb prevents oligomerization of Wzc by occluding its intramolecular interaction surface, that lies on the opposite face to that housing the Wzc catalytic site, thus facilitating the dephosphorylation of the exposed YC. The YC would be buried, and shielded from Wzb, in oligomeric Wzc. Similar chemical shift titrations on Wzb reveals that Wzc docks onto Wzb using a site proximal to the catalytic site of the latter. NMR spin-relaxation measurements confirm this hypothesis in addition to revealing interesting dynamics in the key regulatory elements in Wzc and Wzb.